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SILYLBORANE, SILYLALUMINUM HYDRIDE,
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ABSTRACT

The vibrational frequencies of several silanes H,SiX (X=BH,, AlH,, PH, and
SH) are determined. The infrared and Raman spectra are plotted. Several scale
procedures were use to improve the theoretical spectra. The geometric
parameters in the planar, staggered and eclipsed structures of these species are
fully optimized and compared with ab initio calculations. Basis set effects on
the calculated structures are discussed. A few thermodynamic parameters, net
atomic charges, dipole moment and energy are also computed.

INTRODUCTION

The importance of thin film technology has prompted significant interest in
silane chemistry throughout the world. Research to discover and develop an
inexpensive method of producing efficient amorphous silicon solar cells is
being carried out intensively worldwide'. The p-doped layers of amorphous
devices are usually constructed by codeposition of elements (B, Al, F ...) into
amorpho-Si during the preparation of such films by chemical vapor deposition
(CVD), or by a glow discharge™. Among the molecular structures identified,
several compounds with fluorine were analyzed in a previous paper*. Thus,
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along this line, the present article shows the work carried out on other silanes
with great importance H,Si-X (X=BH,, AlH,, PH, and SH). Our theoretical
calculations collect and analyze the structural data and spectral characteristics
of these molecules.

Concernig these compounds, the silylboranes have not been identified
by direct observation as an isolated entity, because of the experimental
instability of these substances, although the existence of H,Si-BH, has been
postulated®. Silylphosphine H,Si-PH,, originally discovered by Jolly® and
synthesized by the Normal method™®, is the major product of the IR
multiphoton-induced decomposition of H,Si-PH, mixtures’. Silyl phosphine is
a very unstable substance even at -78°C and it apparently reacts with the
adsorbed moisture on the metal surface’. However, some geometric
parameters*'® and the Infrared"' and Raman'? spectra have been reported. Silyl
mercaptan H.Si-SH, characterized by Glidewell'’>'*, may result from the
reaction of disilyl sulphide with hydrogen sulphide'®, although no experimental
structure is available.

Theoretically, the silanes under investigation form several stable
isomers, including forms with X-H-Si bridging bonds. Previous studies using
smaller basis sets have reported conformations for some of the species studies
here'*", although we found that some of them are not stable at high ab initio
level. Stable inverted isomers®, as in SiH,Li, have also been reported to be
possible in the present compounds'®.

COMPUTATIONAL METHODS

The accuracy of the various computational procedures has been discussed and a variety
of results presented bv Hehre er @/, In the present research, the molecular geometries were fully
optimized. with the OPT=TIGHT option. at the restricted Hartree-Fock (RHF) method with the
basis scts 6-31G** and 6-31++G**. In addition, electron correlation was included at the level
of sccond-order Moller-Plesset perturbation theory (MP2), MP2/6-31G**. Vibrational
frequencies were obtained from analvtical second derivatives®, to assess the character of all
stationary points. All molecular orbital calculations were performed with the GAUSSIAN 92 and
94 program packages developed by Pople er al.™

The Figures obtained were prepared with a Macintosh microcomputer, using the BALL
and STICK program™.

RESULTS AND DISCUSSION
GEOMETRY OPTIMIZATIONS

All minimum-energy conformations computed are shown in Fig. 1 with
the labeling of the atoms. In Tables 1-4 the results obtained with several ab
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Fig. 1. Optimum geometry and labeling of the atoms in H,Si-BH,, H,Si-AlH,, H,Si-
PH, and H,Si-SH molecules.

initio basis set are compiled. The total energy and the dipole moment are also
listed. The definition of the parameters k, { and angles w, € is drawn in Fig. 2.

H,Si-BH, compound is stable in two possible C conformations, called
in the present article forms (1) and (11). The difference of energy between both
forms is very small, so rotation about the Si-B bond should be essentially free.
Form (1) is identified as a saddle point (one imaginary frequency). The BH,
bisector of the molecule makes an inversion angle w with the Si-B axis, which
is very small, less than 2.5° (Table 5). Thus no eclipsed or staggered
conformations are found in this compound. In form (1), the repulsion between
the hydrogens H3 and H7 makes the intramolecular distances 1 Si--H6 and
r Si-+H7 different and the angles Si-B-H6 and Si-B-H7. As a measure of this
asymmetry is defined the angle ¢ (Fig. 2). The intramolecular repulsions of the
hydrogens H3 and H7 also produce a tetrahedral character of the -SiH, group,
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Table 1* Optimized bond lengths in A, bond angles in degrees and total energies in
hartrees, in the forms (I) and (II) of Silylborane (H,Si-BH,) at different ab initio

levels.
Form (I) Form (II)
Parameters
6-31G** MP2/6-31G** 6-31G** 6-31++G** MP2/6-31G**
r Si-B 2.0404 2.0186 2.0400 2.0402 2.0221
r Si-H3 1.4795 1.4753 1.4841 1.4836 1.4826
r Si-(H4,H5) 1.4824 1.4798° 1.4802 1.4796 1.4776
r B-H6 1.1903 1.1871 1.1898 1.1903 1.1874
r B-H7 1.1893 1.1860 1.1898 1.1903 1.1874
/ B-Si-H3 113.58 114.15 107.70 107.68 106.63
£ B-Si-H4 109.51 108.66 112.44 112.36 112.83
/ B-Si-H5 109.54 109.56 112.46 112.39 112.82
£ H3-Si-H4 108.05 108.18 108.06 108.06 107.96
£/ H4-Si-H5 107.93 107.77 108.17 108.17 108.42
/ Si-B-H6 119.77 119.46 121.33 121.31 121.34
£ Si-B-H7 122.95 123.24 121.36 121.32 121.33
/ H6-B-H7 117.28 117.30 117.34 117.34 117.28
¢ H3-Si-B-H7 0.09 436 -89.03 -88.98 -88.52
¢ H4-Si-B-H6 59.19 62.93 -29.99 -29.99 -29.66
£ H5-Si-B-H6 -59.01 -54.57 | -152.28 | -152.28 -152.96
/ H5-Si-B-H7 121.01 126.05 29.86 29.86 29.82
(Debyes)
Total Energy (RHF) | 469060 468896 | 469080 | .470585 468967
(-316 am) (MP2) 667434 667476

*In Tables 1-4 the last digit shown in the calculated values is to aid in reproduction of the results and
is not thought to be physically meaningful. *With H4.

calculated through the parameter (, remarkably greater in form (I) than in form
(I), 0.14 A at 6-31G** level and 0.18 A with electron correlation MP2/6-31G**.
Dewviations of the B-H bonds from planarity and symmetry are very small in
each basis set employed; the sum of the angles on boron atom are 360°. In Form
(I) a shght torsion of the -BH, group is observed at MP2/6-31G** level with an
£H3-8i-B-H7 angle of 4.36°. This compound is not known experimentally,
thus there is currently no experimental geometry with which to compare these

theoretical predictions.
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Table 2. Optimized bond lengths in A, bond angles in degrees and total energies in
hartrees, in the forms (I) and (II) of Silylaluminum hydride (H,Si-AIH,) at different

ab initio levels.

Form (I) Form (II)
Parameters

6-31G** 6-31+4+G** | MP2/6-31G** 6-31G* 6-31++G** MP2/6-31G**

r Si-Al 24784 24816 2.4592 24787 2.4815 24521
r Si-H3 14815 1.4808 14792 1.4843 1.4837 1.4812
r Si-H4 1.4836 1.4829 1.4814 1.4826 1.4818 1.4794
r Al-H6 1.5862 1.5854 1.5817 1.5862 1.5853 1.5807
r Al-H7 1.5859 1.5850 1.5813 1.5860 1.3851 1.5806
¢ Al-Si-H3 112.66 112.59 112.90 110.36 110.36 110.30
£ Al-Si-H4 110.86 110.84 110.84 111.67 111.65 111.74
£ Al-Si -H5 110.86 110.84 110.84 112.31 112.27 112.46
£/ H3-Si -H4 107.52 107.57 107.49 107.23 107.25 107.12
/ H4-Si -H5 107.17 107.21 107.03 107.65 107.68 107.66
/ Si-Al-H6 120.00 119.93 119.88 12040 120.38 120.38
¢ Si-Al-H7 121.59 121.55 121.70 121.12 121.09 121.16
£ H6-Al-H7 118 41 118.52 11842 118.47 11852 118.45
¢ H3-Si-Al-H7- 0.06 0.06 0.06 9964 -99.60 -99.68
/ H4-Si-Al-Hé6 59.51 5952 59.41 -39.59 -39.61 -39.59
£/ H5-Si-Al-H6 -59.39 -59.40 -59.29 | -160.64 | -160.64 -160.80
¢/ H5-Si-Al-H7 120.61 120.60 120.71 20.13 20.19 20.06
Dipole moment 0.4068 0.3681 0.4011 0.4090 0.3674 0.3910

{Debyes)

Total Energy ®um|.704987 | 707060 704905 | 704985 | .707059 704834
(-533 a.n.) (MP2) 886888 .886885

H;Si-AlH, shows a geometry similar to H,Si-BH,, Table 2, thus the AlH,
bisector is nearly zero out of line with the Si-Al axis, © = 0.8°. The Si-Al bond
length is longer than the Si-B, thus a smaller repulsion between H3 and H7 is
determined in form (), € is nearly 0.6°, Table 5. The sum of the angles on
Aluminum is also 360°. In form (II) a slight torsion of the -AlH, group is
observed, thus /H4-Si-Al-H6 is ca. -39.6° while /H5-Si-Al-H7 is ca. 20.1°,
because forms (1) and (II) are energetically equivalent; hence rotation is free.
No experimental data appear to be available for this compound.

In silylphosphine, Table 3 lists the structural parameters computed in the

staggered conformation and the experimental data available®'2. The calculated

Si-P bond length, 2.252 A at MP2 level, is in good agreement with the
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Table 3. Optimized bond lengths in A, bond angles in degrees and total energies in
hartrees, in Silylphosphine (H,Si-PH,).

Parameters Staggered Form E;gﬁ; id Experi-
mental®
6-31G** 6-31++G** MP2 6-31G*  \P2/6-31G** 6-31G*
r Si-P 2.2665 2.2678 22531 225221 22784 2.250¢
r Si-H3 1.4759 1.4751 1.4848 1.4741| 14762
r Si-H5 1.4765 1.4756 1.4858 1.4750| 14754
r P-H6 1.4055 1.4054 1.4166 1.4069| 14048 1.420
/ P-Si-H3 107.99 107.95 114.15 107.84] 11147 114.4
/£ P-Si -HS 113.30 113.20 114.10] 109.02 1144
£ H3-Si -H4 109.36 109.42 109.15 109.17| 109.81
£/ H3-Si -H5 109.07 109.13 108.90{ 108.27
/ Si-P-Hé6 97.33 97.30 96.54 95.92 96.90 928
£ H6-P-H7 95.74 95.93 94 .84 95.16 939
/ H3-Si-P-H6 | -169.29 | -169.38 -168.86 96.17
£/ H4-Si-P-Hé6 72.55 72.43 73.38} -25.53
¢ H4-Si-P-H7 169.34 169.41 168.89] -121.71
/ H5-Si-P-H7 48 42 48.50 47771 119.46
Dipole moment| 1.0391 1.0251 1.0066} 1.0575 0.59¢
(Debyes)
Total Energy (RuF)| .543623 | .545261 7376411 .543423].541602
(-632 a.u.) (MP2) | 781491

*From ref. 17. Transition structure. ‘Fromref 12. “Microwave measurements [8]

experimental®*® value 2.250 A. The bond angles at phosphorus are very small
due to the high inversion angle w; the Si-P-H and H-P-H values, 95.92° and
94.84° respectively at MP2 level, are slightly larger than found experimentally'?
92.8°, 93.9°, and® 92.48°, 93.50°. The cclipsed conformation is a stationary
point in C; symmetry and represents a transition structure for the rotation from
one staggered conformation to another. The calculated barrier of 1.27 kcal
mol* at RHF level corresponding to this eclipsed form, is close to the
experimental'” value of 1.51 kcal mol™.

In H,C-PH. compound, several studies are available'**. Thus, comparing
the structures of methyl- and silylphosphine, is observed that the values are
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Table 4. Optimized bond lengths in A, bond angles in degrees and total energies in hartrees. in
the Staggered and eclipsed forms of Silyl-mercaptan (H,Si-SH).

Staggered Eclipsed
Parameters

631G** | 6:31++G* | MP2i6:31G** | 631G** 631G | MP26.31G**

r Si-S 2.1516 2.1530 213921 21597 2.1607 2.1469
r Si-(H3,H5) 1.4733 1.4725 14728 14721 1.4712 1.4713
r Si-H4 1.4704 1.4701 146981 1.4729 1.4720 1.4719
rS -Hé 1.3289 1.3293 1.3319] 1.3272 1.3275 1.3297
¢ S8-Si-H3 111.09 110.93 111.63] 109.84 109.77 110.20
{ S-Si-H4 105.09 105.19 104.83] 108.10 108.10 108.39
£ H4-Si -(H3,H5)] 11036 110.40 110.09| 110.05 110.09 109.71
¢ H3-Si-HS 108.87 108.95 108.55% 10894 108.9% 108.60
£ Si-S-Hé6 91.75 97.56 96.14 97.04 96.88 95.16
£ H3-8i-S-H6 -60.59 -60.61 -60.82| 120.12 120.13 120.12
/ HA4-Si-S-Hé6 -17995 | -179.99 -179.98 0.03 0.02 0.04
£ H5-S1-S-H6 60.73 60.63 60.87] -120.07 | -120.09 -120.04
Dipole moment 1.6759 1.6537 1.61841 1.6967 1.6682 1.6239

(Debyes)
Total Energy (RHF| 779034 | 780572 | 778885 777396 | .778928 777249
(-688 a.u) (MP2) 1.025281 1.023466
X= B, Al or P

Fig. 2. Definition of the parameters x and {,

and the angles w and ¢.
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Table 5. Values of k and ¢ parameters in A, and w (inversion) and ¢ angles in degrees, at

different ab initio levels.
Form (1) Form (II)
Parameters
6-31G** | 631++G** | MP2631G*| 631G* | 6-31++G**| MP2/6-31G*
In H,Si-BH,
X 1.3560 1.3560 1.3462 1.4138 1.4135 1.4202
¢ 0.5918 0.5918 0.6036 04512 0.4506 0.4220
W 1.63 1.63 2.00 1.74 1.74 233
£ 1.20 1.20 142 0 0 0
In H,Si-AlH,
'3 1.3671 1.3668 1.3629 1.3916 1.3910 1.3892
4 0.5708 0.5695 0.5726 05164 0.5162 0.5139
W 081 082 0.84 0.75 0.78 0.82
€ 0.59 0.60 0.62 0.27 0.26 0.29
Staggered Eclipsed

In H,Si-PH

X 1.3561 1.3563 1.3464

¢ 0.5840 0.5813 0.6023

A 79.23 79.06 81.23
In H.Si-SH

X 1.4197 1.4187 1.4208 1.4000 1.3992 1.3967
¢ 0.3828 0.3852 0.3762 0.4576 0.4573 0.4644
w 82.25 82.44 83 86 82.96 83.12 84 84

similar, the equilibrium structure in H,C-PH, being also staggered. The larger
Si-P distance, compared to the C-P bond length, can produce a decrease in the
rotational barrier of H,Si-PH,.

In silyl mercaptan, the Si-S bond length in the staggered form is slightly
shorter than in the eclipsed, 2.1392 and 2.1469 A respectively at MP2 level,
Table 4. Due to the H4--H6 interaction, the S-Si-H bond angles differ more
in the staggered conformation (ca. 6°) than in the eclipsed form (ca. 2°). The
difference of energy between the eclipsed (saddle point) and staggered (real
minima) forms is very small, ca. 1.03 kcal/mol.

In H,C-SH compound, microwave data have been reported”?*. Comparing
the structures of methyl- and silyl- compounds, it is observed that they are very
similar, the greater bond length to the sulphur (Si-S is ca. 2.15 A while C-S
is ca. 1.81 A) results in a lower rotational barrier in silyl than in methyl'®
mercaptan. In the angles, the Si-S-H (ca. 97°) is very close to C-S-H, 96.5°.



Downl oaded At: 03:36 30 January 2011

STRUCTURES AND SPECTRAL CHARACTERISTICS 387

Comparing the results obtained in the silanes under study (Tables 1-4), the
following is observed: In form (I) of H,Si-BH, and H,Si-AlH,, the repulsions
between H3 and H7 produce, compared to form (II), a remarkable increment in
the tetrahedral character of the -SiH, group and thus of the parameter {. This
increment is higher in H,Si-BH, (the value of { changes ca. 0.14 A at 6-31G**
level) than in H,Si-AlH, (the change of { is ca. 0.054 A), due to the fact that
intramolecular distance r H3-+H7 is longer in H,Si-BH,, ca. 3.30 A, than in
H,Si-AlH,, ca. 3.88 A.

With electron correlation the Si-X bond is remarkably reduced (ca. 0.02
A) and slightly the Si-H. Also the X-H bond is shorter except with X=P and S,
in which the bond slightly increases. The inversion angle w is always
incremented, especially in H,Si-PH,, ca. 2°. In form (I) of H,Si-BH, the
reduction of the Si-B bond gives rise to a shorter intramolecular distance
H3-+H7 and thus a slight increase in the value of {. However, in form (II) the
repulsion H3--H7 is not produced, and thus the reduction of the Si-B bond
with MP2 level yields to a shorter intramolecular distance of the boron atom
with the hydrogens of the -SiH, group, with remarkable decreases of the
parameter . These features are also observed in H,Si-SH, and therefore, the
reduction of the Si-S bond with electron correlation produces a lower { in the
staggered conformation and a higher value in the ecl/ipsed form. In H,Si-AlH,
with a longer Si-Al bond, these interactions are weakened and thus the changes
are much decreased. In H,Si-PH,, at difference of H,Si-BH, and H,Si-AlH,, the
shortening of the Si-P bond results in a higher {, because in this case the high
inversion angle w of the -PH, group leads to a slight interaction of the
hydrogens with those of the -SiH, group.

When diffuse functions are added to the basis set , an enlargement of in
the Si-X bond length and a very small decrease in the Si-H bond are observed.
The parameter ¢ is also slightly diminished.

The total atomic charges from a Mulliken population analysis are collected
in Table 6. The hydrogens (except H6 in H,Si-SH) and X (X=S, P and B at
6-31++G** level) atoms are negatively charged (as in other silanes), with the X
atom in the case of sulphur having the highest negative charge. The Si, due to
its lower electronegativity, acts as an electron reservoir for its substituents.
Adding 3d (Si) functions to the basis set has the effect of reducing the absolute
values of all atomic charges, caused® by the filling up of the 3d orbitals on Si
with electronic charge density from H and X.

The effect of the diffuse functions in H,Si-BH, and H,Si-AlH, is to
increase the positive atomic charge on the silicon atom (0.078 and 0.117
respectively) and to decrease it on B and Al atoms, 0.124 and 0.036
respectively. However, in H,Si-PH, and H,Si-SH, the positive charge on Si
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Table 6. Values of the total atomic charges calculated at different ab initio levels.

Form (1) Form (II)
Parameters
6-31Ge* 6-314+G** | MP26-31G**|  631G* | 6-31++G** | MP2/6-31G**
In H,Si-BH,
Si 0.5854 0.6637 0.5848 0.5853 0.6645 0.5847
B 0.0272 | -0.0973 | 0.0276 0.0272 | -0.1006 | 0.0277
H3 0.1674 | -0.1761 | -0.1671 -0.1630 | -0.1705 | -0.1636
H4, HS -0.1637 | -0.1747 | -0.1637 -0.1659 { -0.1771 | -0.1656
Hé6 -0.0610 | -0.0284 | -0.0609 -0.0588 | -0.0197 | -0.0588
H7 -0.0567 | -0.0123 | -0.0567 -0.0590 | -0.0196 | -0.0588
In H,Si-AlH,
Si 03117 0.4288 03150 03115 0.4294 03164
Al 0.5381 0.5025 0.5345 0.5382 0.5022 0.5331
H3 -0.1604 | -0.1576 | -0.1605 -0.1603 | -0.1568 | -0.1605
H4, H5 -0.1602 | -0.1585 | -0.1604 -0.1602 | -0.1590 | -0.1604
Hé6 -0.1855 | -0.2338 | -0.1852 -0.1849 | -0.2311 | -0.1846
H7 -0.1835 | -0.2230 | -0.1831 -0.1839 | -0.2259 | -0.1836
Staggered Eclipsed
In H,Si-PH. .
Si 0.6481 . 0.5408 ] 0.6455
p -0.0823 , 0.0540 ‘ -0.0752
H3.H4 -0.1558 -0.1488 | -0.1571
H3 -0.1576 -0.1556 | -0.1575
H6, H7 -0.0482  -0.0707 ‘ -0.0493
In H,Si-SH ‘
Si 0.7381 0.6306 | 07331 0.7400 0.6088 0.7354
S -0.3388  -0.2644 | -0.3290 -0.3522 | -0.2649 | -0.3425
3. HS -0.1571  -0.1450 . -0.1578 -0.1529 -0.1371 -0.1543
H4 -0.1500  -0.1290 -0.1517 -0.1559 . -0.1285 | -0.1569
Hé 0.0649 *©  0.0528 ‘ 0.0631 0.0739 1 0.0588 \ 0.0727
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decrease (0.107 and 0.119 respectively) and increase on P and S atoms, 0.136
and 0.081 respectively. In the hydrogens of the -SiH, group, the effect of the
diffuse functions is to reduce the positive charge ca. 0.010 in H,Si-BH, and to
increase 0.002, 0.005 and 0.017 respectively in H,Si-AlH,, H,Si-PH, and H,Si-
SH; while in the hydrogens of the -XH, (or -XH) group, the positive charge is
increased ca. 0.039 in H,Si-BH, and reduced 0.044, 0.022 and 0.014
respectively in H,Si-AlH,, H,Si-PH, and H,Si-SH.

The electron correlation has a very low effect on the atomic charge. Thus
the positive charge on Si slightly increases, 0.004 in H,Si-AlH,, while 0.003
and 0.005 decrease respectively in H;Si-PH, and H,Si-SH; in H,Si-BH, the
change is very small, 0.001. The variation of the atomic charge on B atom is
also insignificant (< 0.001). In P and S atoms the positive charge is slightly
increased, 0.007 and 0.010 respectively. In hydrogens no significative change
is observed in H,Si-BH, and H;Si-AlH, molecules, while in H,Si-PH, and H,Si-
SH the positive charge is slightly reduced, ca. 0.001.

Compared to H,C-XH, compounds, a shift of electron density away from
the -XH, group is noted. As expected from electronegativity arguments, the
charge on the methyl group is greater than the charge on the silyl group.

VIBRATIONAL FREQUENCIES

In Tables 7 and 8 are collected the harmonic vibrational frequencies
calculated in the form (I) of H,Si-BH, and HSi-AlH, molecules respectively.
The second column shows the bands computed at 6-31G** level, their Infrared
intensities (the third and fourth columns), their Raman activities (fifth and sixth
columns), and the assignment established (the last column). The relative
intensities were obtained by dividing the computed value by the intensity of the
strongest line. Table 9 lists the vibrational frequencies in H,Si-PH, and Table
10 in the staggered form of H,Si-SH. The calculated frequencies in the other
conformations, with one imaginary frequency (saddle point), are shown in
Table 11. The vibrational modes are numbered according to the order of
increasing frequencies. In H;Si-AlH, the frequency calculations at 6-31G**
level confirm that the forms (I) and (II) are real minima, whereas at 6-3 1++G**
and MP2 level, form (1) is a saddle point with one negative frequency.

The IR and Raman spectra computed for the form (II) in H,Si-BH,, form
() in H,Si-AlH,, and staggered in H,Si-PH,, H,Si-SH are plotted in Figs. 3-7.

Concerning the values of Tables 9-10, it is noted that the frequencies
computed are always higher than those obtained by experiments because of the
harmonic approximation, and are in agreement with Hartree-Fock bond lengths,
which are expected to be shorter than the experimental ones.
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Fig. 7. Infrared and Raman spectra calculated in the siaggered conformation of H,Si-SH

The symmetric v (Si-H) stretching vibration is observed in general at a
higher frequency than the antisymmetric one, Tables 7-11. This is a usual error
in ab initio and semiempirical methods when the frequencies are very close®.
In monoalkylsilanes the frequencies of the asymmetric and symmetric -SiH,
modes have been reported so close as to be indistinguishable®'. In silanes these
Si-H stretching frequencies are considerably closer together than the
comparable C-H frequencies because of the heavier mass of the silicon atom.
In H,Si-PH, molecule (Table 9), three Si-H stretching vibrations are computed
(two at the same frequency) in agreement with the only two bands observed in
the Raman spectra' of the gaseous H,Si-PH,. The computed Si-H deformations
show strong IR bands, in analogy with the C-H deformations.

To get the desired degree of accuracy in the prediction of a spectrum is not
always possible because the experimental frequencies depend on effects that are
not included in the theory, such as solvent shifts, anharmonicity effects, Fermi
resonance, etc. Also the theoretical frequencies are known to be
overestimated”*? by approximately 10%. To correct this deficiency, three
possibilities have been reported to be used on the computed frequencies. In the
first procedure, sets of specific scaling factors (or correction factors) described
in ab initio (at 3-21G* level***) and semiempirical methods (AM1°***) are used
for each vibrational mode. Although with this procedure a lower error is
obtained than with the other two procedures that are described below, specific
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scaling factors have not been reported in silanes*. Another procedure is the use
of a scaling equation to correct in general all the theoretical frequencies, which
in the case of 6-31G** level has been established™ as:

v(scaled) = -45.99 + 0.92227 v(theor.) (cm™)
This equation was used in the present paper with the 6-31G** frequencies of
H,Si-PH, and H,Si-SH compounds (Tables 9 and 10), in which experimental
frequencies have been recorded'*". The % error obtained in the scaled
frequencies is very small, in general less than 5%, except in the low frequency
range (< 650 cm™).

The third procedure is to use one uniform correction factor of 0.9 in ail
the computed frequencies®. The results obtained in the frequencies of H,Si-PH,
and H,Si-SH compounds are shown in the fifth and sixth columns of Tables 9
and 10 respectively. The scaled Raman spectrum of H,Si-PH, is plotted in Fig.
6 together with the experimental Raman spectra'’. A very good agreement is
observed between theory and experiment, with only a slight disagreement in the
scaled frequency at 700 cm’, characterized as y(PH,)+y(SiH;), while the
corresponding band at 722 cm™ has been assigned'? as y(PH,) wagging mixed
with T'(SiH,). In general, with this procedure a lower error is obtained than by
using the scaling equation (2™ procedure), which gives smaller desviations in
the frequency range (> 2000 cm™).

The Raman frequencies reported' in the gas phase of H,Si-PH, are very
close to the IR data reported in the parent H,C-PH, molecule’’ which are
included in Table 9 for comparison purposes. The computed frequencies of
H,Si-SH are also in agreement with the IR data of methyl mercaptan®*,
included in Table 10.

The zero-point vibrational energies, thermal energies, rotational constants
and entropies, and in the most stable conformations, are listed in Table 12. In
the ZPE energies, a scaling factor of*? 0.89 and*® 0.93 has been recommended
to be used to correct the known overestimation obtained by using Hartree-Fock
theory. In H,Si-PH,, experimental values of the rotational constants (51.8617,
5.58148 and 5.55650) have been reported'?, which are in agreement with our
calculations.

SUMMARY AND CONCLUSIONS

Two optimum structures called form (I) and (II) were obtained in H,Si-
BH, and H,Si-AlH, molecules, while eclipsed and staggered forms were
identified in H,Si-SH. Only a staggered conformation was found as minimum
in H;Si-PH,. The calculated inversion angle w was very small, ca 2° in H,Si-
BH, and ca. 0.8° in H;Si-AlH,, thus could not be identified eclipsed or
staggered conformations in these molecules.
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Table 12. HF/6-31G** computed zero-point vibrational energies (kcal mol™), sum
of thermal energies (kcal mol™), rotational constants (GHz), and entropies (cal mol™
K™).

Parameter BH2 AlH2 PH2 SH
Form (1II) Form (1) staggered staggered

Zero-point energy (ZPE) 28.97 2468 28.45 2297
Thermal energy (TC) 31.86 2793 31.17 2549
Rotational constants 6421 53.20 52.51 67.11
10.48 480 5.51 6.22
10.05 4.64 5.47 6.09

Entropy
Total 66.34 72.78 66.14 64.59
Translational 37.27 38.19 38.39 38.39
Rotational 21.39 23.12 2283 2236
Vibrational 7.68 1146 492 385

The agreement between the calculated and experimental structure of H,Si-
PH, was satisfactory, with all of the calculated structural values well within the
uncertainties of the experimentally determined bond lengths and bond angles.

The difference of energy between forms (I) and (II) in H,Si-BH, and H,Si-
AlH,, and between the eclipsed and staggered forms of H,Si-SH, was very
small, so rotation about the Si-X bond should be essentially free.

In a comparison analysis, the structure of the present silanes were
computed very close to those of the respective methanes. The values of the total
atomic charge, rotational constant and other thermodynamics parameters were
coherent.

The agreement between computed frequencies and available experimental
values seemed reasonable. By using one uniform correction factor of 0.9 a very
low error in general was obtained (less than 3.5%), although in the frequency
range (> 2000 cm™) a slightly better agreement was established with a scaling
equation. These procedures although studied in H,Si-PH, and H,Si-SH, could
be applied to H,Si-BH, and H,Si-AlH, molecules for an accurate prediction of
their theoretical spectra, since they have not been determined experimentally.
It should be noted that the computation of a vibrational infrared spectrum of a
molecule is cheaper than the synthesis of the molecule and the experimental
determination of its spectrum.
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SUPPLEMENTARY MATERIAL

Supplementary material available: A list of the z-matrix optimized geometries, cartesian
coordinates and force constant matrixes for all the compounds. Ordering information is given
on any current masthead page.
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